Problems with

 Recursive Descent Parsing
Recursive descent is simple. What could possibly go wrong?

Problem 1 -- Recursive Descent can't handle left-recursive rules. Rule E : : = E+T | T
becomes

```
void E() {
    E()
}
```

You know that can't work.

This is a real problem. We have already seen that left-recursive rules are important for expression grammars because they give us leftassociative operators, and these are an important part of most programming languages.

The solution used in APL was to make all operators right-associative so you don't need left-recursive rules, but this feels wrong to most programmers.

We will handle this by modifying the recursive descent algorithm for left-recursive rules.

Consider a typical left-recursive rule:

$$
\mathrm{E}::=\mathrm{E}+\mathrm{T}|\mathrm{E}-\mathrm{T}| \mathrm{T}
$$

For the moment think of T as a terminal symbol, as if our grammar was

$$
E::=E+t|E-t| t
$$

This rule generates a chain of t's, with a + or - operator between each pair:

$$
\mathrm{t} 1 \pm \mathrm{t} 2 \pm \mathrm{t} 3 \pm \ldots \pm \mathrm{tn}
$$

```
t1 }\pm\textrm{t}2\pm\textrm{t}3\pm\ldots\pm\textrm{tn
```

Instead of recursing to get the prefix of this, we'll think about it as follows. We know it has to start with a t, so we grab that t, and consume its tokens. If the next token is a + or -, we are still in the E expression so we do a getNextToken() to get past this operator, and get another t . This continues until the token following one of our t's is not a + or -

This leads to the following code:

```
void E(){
    T();
        while (IsAddOp( currentToken )) {
            getNextToken();
                T();
    }
}
```

Here IsAddOp() is a simple function that returns true if its argument is a token that represents + or -.

This is fine as far as recognizing strings, but we usually want our parser to build a parse tree. We know we want this to be a leftassociative tree, so the expression t1- t2 -t3 parses to

TreeNode E() \{
 TreeNode t = T();
 while (IsAddOp(currentToken)) \{
 TreeNode t1 = new TreeNode();
 t1.token = currentToken;
 getNextToken();
 t1.leftChild = t;
 t1. rightChild = T();
 t = t1;
 \}
 return t;
 \}

The BPL grammar contains rules

$$
\begin{aligned}
& \mathrm{E}::=\mathrm{E}+\mathrm{T}|\mathrm{E}-\mathrm{T}| \mathrm{T} \\
& \mathrm{~T}::=\mathrm{T}^{*} \mathrm{~F}|\mathrm{~T} / \mathrm{F}| \mathrm{T} \% \mathrm{~F} \\
& \mathrm{~F}::=-\mathrm{F} \mid \text { \&Factor | *Factor | Factor }
\end{aligned}
$$

The E and T procedures need to have loops that build leftassociative trees. The F rule is not left-recursive, so you can use the usual recursive descent techniques for it

There is no general fix for the problem of left-recursive rules -if you find one in a grammar that you are parsing, you either need to find a trick to modify your recursive descent techniques to fit the rule, or use a different parsing technique. This is one of the reasons that commercial compiler shops generally don't use recursive descent.

Problem 2: Recursive descent only works if we can tell which rule to use. If you have grammar rules $A::=B \mid C$ and rules B and C start with the same tokens, we can't tell which to use.

For example, consider the grammar

$$
\begin{aligned}
& A::=a B a|B| a \quad(A \text { is the start symbol) } \\
& B::=a B b \mid b
\end{aligned}
$$

This is an unambiguous grammar that generates

$$
\left\{a^{n} b^{n} b, a^{n} b^{n} a: n>=0\right\}
$$

If our input string is aaaaaaabbbbbbbba we want the first rule we use (the top of our parse tree) to be $A::=a B a ;$ if the input string is aaaaaaabbbbbbbbb, we want the first rule to be A ::= B. We have to read across 15 symbols before we determine which rule to use, and by the time we have done that our current token is the end-of-input symbol.

