
Problems with
Recursive Descent Parsing

Recursive descent is simple. What could possibly go wrong?

Problem 1 -- Recursive Descent can't handle left-recursive rules.

 Rule E ::= E+T | T

becomes

 void E() {
 E()

 }

You know that can't work.

This is a real problem. We have already seen that left-recursive rules
are important for expression grammars because they give us left-
associative operators, and these are an important part of most
programming languages.

The solution used in APL was to make all operators right-associative
so you don't need left-recursive rules, but this feels wrong to most
programmers.

We will handle this by modifying the recursive descent algorithm
for left-recursive rules.

Consider a typical left-recursive rule:

 E ::= E+T | E-T | T

For the moment think of T as a terminal symbol, as if our grammar
was
 E ::= E + t | E - t | t

This rule generates a chain of t's, with a + or - operator between
each pair:

 t1 ± t2 ± t3 ± ... ± tn

 t1 ± t2 ± t3 ± ... ± tn

Instead of recursing to get the prefix of this, we'll think about it as
follows. We know it has to start with a t, so we grab that t, and
consume its tokens. If the next token is a + or -, we are still in the
E expression so we do a getNextToken() to get past this operator,
and get another t. This continues until the token following one of
our t's is not a + or -

This leads to the following code:

void E() {
 T();
 while (IsAddOp(currentToken)) {
 getNextToken();
 T();
 }
}

Here IsAddOp() is a simple function that returns true if its
argument is a token that represents + or -.

This is fine as far as recognizing strings, but we usually want our
parser to build a parse tree. We know we want this to be a left-
associative tree, so the expression t1- t2 -t3 parses to

TreeNode E() {
 TreeNode t = T();
 while (IsAddOp(currentToken)) {
 TreeNode t1 = new TreeNode();
 t1.token = currentToken;
 getNextToken();
 t1.leftChild = t;
 t1.rightChild = T();
 t = t1;
 }
 return t;
}

The BPL grammar contains rules

 E ::= E+T | E-T | T
 T ::= T*F | T/F | T%F
 F ::= -F | &Factor | *Factor | Factor
 ...

The E and T procedures need to have loops that build left-
associative trees. The F rule is not left-recursive, so you can use the
usual recursive descent techniques for it

There is no general fix for the problem of left-recursive rules --
if you find one in a grammar that you are parsing, you either
need to find a trick to modify your recursive descent techniques
to fit the rule, or use a different parsing technique. This is one
of the reasons that commercial compiler shops generally don't
use recursive descent.

Problem 2: Recursive descent only works if we can tell which
rule to use. If you have grammar rules A ::= B | C and rules B
and C start with the same tokens, we can't tell which to use.

For example, consider the grammar
 A ::= aBa | B | a (A is the start symbol)
 B ::= aBb | b

This is an unambiguous grammar that generates
 { anbnb, anbna: n >= 0}

If our input string is aaaaaaabbbbbbbba we want the first rule
we use (the top of our parse tree) to be A ::= aBa; if the input
string is aaaaaaabbbbbbbbb, we want the first rule to be A ::=
B. We have to read across 15 symbols before we determine
which rule to use, and by the time we have done that our
current token is the end-of-input symbol.

